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Groupe Instabilité et Turbulence, CEA/DSM/DRECAM/SPEC and CNRS URA 2464, 91191 Gif-sur-Yvette Cedex, France

Received 28 March 2003 / Received in final form 29 January 2004
Published online 18 June 2004 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2004

Abstract. A stochastic model is derived to predict the turbulent torque produced by a swirling flow. It is
a simple Langevin process, with a colored noise. Using the unified colored noise approximation, we derive
analytically the PDF of the fluctuations of injected power in two forcing regimes: constant angular velocity
or constant applied torque. In the limit of small velocity fluctuations and vanishing inertia, we predict that
the injected power fluctuates twice less in the case of constant torque than in the case of constant angular
velocity forcing. The model is further tested against experimental data in a von Karman device filled with
water. It is shown to allow for a parameter-free prediction of the PDF of power fluctuations in the case
where the forcing is made at constant torque. A physical interpretation of our model is finally given, using
a quasi-linear model of turbulence.

PACS. 47.27.-i Turbulent flows, convection, and heat transfer – 47.27.Eq Turbulence simulation and
modeling

1 Introduction

1.1 Historical background

A classical topic in turbulence research is the computation
of global transport properties connected with the macro-
scopic result of turbulent motions at microscopic scales.
These motions are characterized by very rapid character-
istic time scales, and can be considered, from a macro-
scopic point of view, as fluctuations. The “conventional
approach” consists in modelling the mean value of non
linear functions of these fluctuations in terms of averaged
quantities, the most famous example being the turbulent
viscosity [1]. However, this will only give evolution equa-
tions for averaged quantities and nothing can be predict
on the shape of the fluctuations (for example their prob-
ability distribution function, PDF in the following). An
alternative approach is to consider these fluctuations as
noises and most of problems dealing with turbulent trans-
port could then be solved if one were able to prescribe the
statistics of this noise, as a function of some global prop-
erties of the flow. A priori, this can be done in two ways.
Firstly, by assuming the probability density function of
the noise to be known. This approach has been pioneered
by [2], starting from Navier-Stokes equations, but its solu-
tion has encountered considerable technical difficulties [3].
In some instances (e.g. for velocity increments) where the
noise obeys a Markov property, it is however possible to
derive an approximate Fokker-Planck equation by fitting
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of the turbulent data [4–7]. Another way to prescribe the
statistics of the noise is through a stochastic equation,
taking for example the Langevin equation. In some sense,
this approach has been pioneered by [8], who assumes a
Gaussian white noise statistics for the acceleration. Re-
finements of this model have later been proposed by [9–12]
to account for intermittency of small scale velocity incre-
ments.

1.2 The Langevin approach

From a practical (numerical) point of view, Langevin ap-
proaches are often easier to implement, since they only in-
volve integration of ordinary differential equation, in con-
trast with Fokker-Planck methods which involve partial
differential equation in a high dimension space (the phase
space). From the theoretical point of view, the link be-
tween the two approaches is not straightforward: it can be
shown that different Langevin models can in fact lead to
the same Fokker-Planck equation, so that the correspon-
dence between the noise property and the fluid equations
of motions is not always obvious. In that respect, it would
be interesting to develop some sort of systematic proce-
dure to derive a Langevin equation for the noise starting
from the Navier-Stokes equations. Recently, [13–15] pro-
vided evidence that the small scales of a turbulent flow are
mostly slaved to the large scale, and follow a quasi-linear
dynamic [16–19]. This dynamics is described by the rapid
Distortion Theory, see e.g. [20–24]. This led us to propose
a new turbulent model for small scale turbulence, in which
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Fig. 1. Von Karman experimental set-up, Ω and Γm are re-
spectively the angular velocity of the disk and the torque sup-
plied by the engines.

the velocity is given as a solution of a linear stochastic
equation of Langevin type [25]. A preliminary validation
of the model was done by comparison with direct numer-
ical simulation of isotropic 3D turbulence. This kind of
turbulence is however seldom realized in real life appli-
cations. Therefore, a validation of this type of model in
non-isotropic, non-homogeneous situations would be most
welcome.

1.3 A model experiment

A good prototype of this type of flow is the so-called von
Karman flow, the flow between two coaxial rotating disks
(cf. Fig. 1). This simple device allows both for turbulence
with a very large Reynolds number and easy access to
global transport properties via torque measurements fo-
cusing either on averaged quantities [26–28] or probability
distributions [29]. The statistical analysis revealed a rich
and complex connection between the energy injection and
dissipation, reflecting the non-trivial coupling between the
macroscopic scale and the underlying microscopic turbu-
lent noise. For example, Titon and Cadot [29] studied
power injection statistics, in the regime obtained when
the disks are counter-rotating at same angular velocity. In
this case, the stationary state is made of two cells with op-
posite azimuthal velocity. The measurements of Titon and
Cadot cover a range of Reynolds number between 2× 104

to 5×105, in two regimes: in the first one, the angular ve-
locity of the stirrers is constant (Ω-mode); in the second
one, the mechanical torque is kept constant in time (Γ -
mode). For each mode, the shape of the injected power
statistics is found independent of the Reynolds number.
It is approximately Gaussian, with a slight asymmetry.
While the rate of fluctuations of the injected power is in-
dependent of the Reynolds number within each mode, it is
found to depend strongly on the type of mode: it is twice
larger in the first regime than in the second one.

In stationary regime, one expects the energy injection
to be equal on average to the energy dissipation. Yet, the
two processes clearly differ: the nearly Gaussian character
of the PDF’s of energy injection fluctuations contrasts

with the very non-Gaussian (log-normal) behavior ob-
served for energy dissipation. Also, the strong dependence
of the statistics on the forcing mechanism goes against the
universality assumption usually applied on energy dissi-
pation in classical theories of turbulence. These interest-
ing differences are far from being completely understood,
from a theoretical point of view. In a recent work, Au-
maitre et al. [30] showed that the statistics of the injected
power obey a “fluctuation theorem”, enabling to connect
the probabilities of positive and negative production rate
during a given time interval (this characterizes the asym-
metry of the curve). However, a rigorous proof of the the-
orem only applies to time-reversible systems, at variance
with ordinary turbulence. Aumaitre et al. [30] therefore
also mention that their result could be just a consequence
of the theory of large deviations [31,32].

1.4 Aim of the paper

These two examples illustrate clearly the complexity of the
global transport properties occurring in the von Karman
device. The questions we address in the present paper
are: (i) can we capture the main features of the trans-
port through a simple Langevin model? (ii) can we make
a link between this Langevin model and the Navier-Stokes
equations through the quasi-linear model of turbulence
of [16–19,25]?

We answer to these questions in two separate sec-
tions, one devoted to the finding and analyzing of the
Langevin model, and one devoted to its possible justifica-
tion through the turbulent model. To further test the ba-
sic hypothesis of the model, and to validate it thoroughly,
we used confrontation with experimental data collected
specifically for this purpose in the von Karman experi-
mental device of Saclay, described in [33].

2 Ω-mode and the Langevin model

2.1 Momentum equation

To derive the simplest Langevin model compatible with
the data, we may follow Titon and Cadot [29], and write
the momentum balance equation for one stirrer (including
blades and water trapped in it), as:

I
dΩ

dt
= Γm(t) − Γf (t), (1)

where I is the inertia of the disks (including the blades
and the water trapped in it), Ω is the rotation velocity
of the disk, Γm is the angular momentum supplied by the
motors (the propeller) and Γf is the torque due to the
fluid acting onto the propeller.

2.2 Derivation of the Langevin model

From a theoretical point of view, Γf (t) is the turbu-
lent contribution to be modeled as a noise. Its main
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Fig. 2. Sketch of 5 seconds of the torque signal from the Saclay
experiment (top) and the temporal correlation (bottom).

properties can be easily specified by working in the Ω-
mode, where Γm = −Γf , and study the signal delivered
by the motor. From experiments performed with a von-
Karman device working in water, regulated in Ω-mode
(Ω = 59.6 rad s−1), one observe a roughly Gaussian dis-
tribution with a mean value proportional to Ω2, with pref-
actor having the sign of Ω. We thus write Γf = cΩ|Ω|− ξ
where ξ is a Gaussian noise with zero mean, specified by
its second order moment (the variance). To completely
determine it, we extracted a temporal correlation for the
mechanical torque (Fig. 2 shows this correlation versus
time). One sees an oscillation at a frequency around 8.9 Hz
(56.2 rad s−1), superposed to a rapid damping. On the
other hand, the Fourier transform of the signal displays a
rather wide ranging from 0 to about 9 Hz (Fig. 3), instead
of a well defined narrow peak, which would be charac-
teristic of a meaningfull oscillation. Finally, we note that
such oscillation is not visible in similar measurements per-
formed in air [26]. It is therefore difficult to decide whether
this oscillation is a real physical feature, or provoked by
some experimental artefact.

If the oscillating behavior of the correlation function
is considered, the simplest Langevin model is the OWN
(oscillating white noise) model:

d2ξ

dt2
= −2γ

dξ

dt
− ω2

0ξ + Γ (t), (2)
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Fig. 3. Spectrum of the correlation function.

where 〈Γ (t)Γ (t′)〉 = 2D0δ(t − t′). This equation leads to
a stationary Gaussian distribution for ξ (thermal equilib-
rium) with variance 〈ξ2〉 = D0/(2γω2

0) and a temporal
correlation C(τ) = 〈ξ(t + τ)ξ(t)〉 which reads:

C(τ)=e−γτ

[
A cos

(√
ω2

0 − γ2τ

)
+B sin

(√
ω2

0 − γ2τ

)]
,

(3)
where A = 〈ξ2〉 and B = γA/

√
ω2

0 − γ2.
If, on the other hand, the oscillation is a spurious ex-

perimental artefact, the only physical property to take into
account is the damping, which appears approximately ex-
ponential. The resulting Langevin equation is the EWN
(exponential white noise) model:

dξ

dt
= −1

τ
ξ +

η(t)
τ

, 〈η(t)η(t′)〉 = 2Dδ(t − t′). (4)

This leads to an exponentially decaying correlation func-
tion

C(τ) =
D

τ
e−

t
τ . (5)

2.3 Calibration

The constants appearing in the models OWN and EWN
can be found by fit on the PDF of torque measurements
and correlation function. For the model OWN, we find:

ω0 = 55.9 rad s−1,

γ = 24.1 s−1,

D0 = 2γω2
0〈ξ2〉 = 7.49 × 103 kg2 m4 s−7,

c = 7.42 × 10−4 kg m2 (6)

while for the model EWN, we find:

τ =
1
γ

= 0.042 s,

D = τ〈ξ2〉 = 2.1 × 10−3 kg2 m4 s−3,

c = 7.42 × 10−4 kg m2. (7)
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Fig. 4. PDF of the torque (top) and the temporal correlation
(bottom). The points are from the experiment, the solid line
corresponds to the model OWN and the dashed line to the
EWN model (concerning the PDF, both model give the same
Gaussian distribution).

Our calibration can be checked by comparison between the
model and the data, provided in Figure 4: top for the PDF
and bottom for the correlation function. One sees that the
PDF are well reproduced with our choice of parameter. For
the correlation functions, one sees that the model OWN
captures well the first oscillation, but decreases a little bit
too slowly.

3 Predictions in Γ-mode

3.1 Numerical study of the model

The calibration of the model enables the determination
of the probability distribution for angular velocity in the
Γ -mode. In this case, Γm = cte and the angular velocity
becomes a stochastic variable, solution of the equation:

I
dΩ

dt
= Γm − c|Ω|Ω + ξ(t), (8)

where ξ(t) is given by equation (2) or (4). Solutions of this
coupled system of equation can be found using classical
stochastic numerical methods [34]. The only trick arises
for the OWN model whose dynamics is second order in
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Fig. 5. PDF of the angular velocity computed in Γ -mode
(Γm = 2.8 kgm2 s−2) numerically for the two models. The
parameters values are that determined in the calibration and
I = 0.022 kg m2. We also show the numerical integration of
the EWN model with values for τ et D corresponding to the
overdamped approximation.

time. In this case, we used the following numerical scheme:

ξ(t + ∆t) = ξ(t) + y(t)∆t,

y(t + ∆t) = y(t) − ω2
0ξ(t)∆t − 2γy(t)∆t + Γ (t),

Ω(t + ∆t) = Ω(t) + (Γm − c|Ω(t)|Ω(t))
∆t

I
+ ξ(t)

∆t

I
.

(9)

In Figure 5, we show an example of the resulting prob-
ability distribution function computed numerically using
the two models, and with the constants calibrated on the
data. In both cases, one obtain a PDF with a mean value
〈Ω〉 = 61.4 rad s−1, and some deviations from a Gaussian
character. However, one sees that the two models are char-
acterized by quite different variances. In a sense, this is
quite surprising because the two models can be shown to
exhibit interesting similarities under a simple approxima-
tion.

3.2 Overdamped approximation

Indeed, in the overdamped regime, one can neglect inertia
in (2) so that the noise in the OWN model obeys:

dξ

dt
= −1

τ
ξ +

η(t)
τ

, τ =
2γ

ω2
0

,

〈η(t)η(t′)〉 =
2D0

ω4
0

δ(t − t′) = 2Dδ(t − t′). (10)

One therefore recovers the equation for the EWN with
slightly different parameters:

τ =
2γ

ω2
0

= 0.015 s,

D =
D0

ω4
0

= 7.67 × 10−4 kg2 m4 s−3,

c = 7.42 × 10−4 kg m2. (11)
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The comparison between the PDF in the overdamped ap-
proximation (cf. next section) and the PDF from the nu-
merical simulation shows a good agreement. The present
result therefore suggests that the large difference between
the two models only comes from the different physical
parameters. To understand the origin of the difference,
we undertake an analytical investigation, using the EWN
model.

3.3 Analytical study

3.3.1 Power in Ω-mode

In this regime, the power delivered by the propellers and
the power injected in the flow are equal. In the sequel, we
shall call this power PΩ = P1 = P2 = cΩ3 + ξΩ. We can
immediately derive the PDF of PΩ from ξ. It is a Gaussian
random variable with mean cΩ3 and variance:

δP 2
Ω = Ω2〈ξ2〉 =

DΩ2

τ
. (12)

3.3.2 Power in gamma-mode

To find the power in the gamma-mode, one must solve
analytically the equation (8) with (4). A technical dif-
ficulty arises because ξ is not a δ-correlated process.
However, under the unified colored noise approximation
[35,36], one can compute the stationary PDF of Ω and
get the following (cf. Appendix A):

Ps(Ω) = N(I + 2cτ |Ω|) exp
{

1
D

[
IΩ(Γm − cΩ2θ(Ω)/3)

+ cτΩ2(Γmθ(Ω) − cΩ2/2)
]}

, (13)

where θ is the sign function. The moment of this distri-
bution cannot be computed analytically in general. The
simplest approximation which allows analytical calcula-
tions is when the intensity of the noise is small, a regime
that will be considered in the next section.

The small noise limit

In this section we rewrite the probability density func-
tion for Ω in a dimensionless form: with χ =

√
c

Γm
Ω,

R2 = 2D
τΓ 2

m
and S = 2I√

cΓmτ
, one has for the stationary

probability density of χ:

Ps(χ) = N

(
|χ| + S

4

)
exp

(
− 1

R2

[
(χ2 − θ(χ))2

− Sχ +
S

3
θ(χ)χ3

])
, (14)

where N stands for the normalization.
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The points correspond to the numerical computation and the
solid line to the approximate expression derived assuming the
intensity of the noise was small.

In Appendix B, we used Laplace’s method with R � 1
to compute the nth order moment of the distribution (14):

〈χn〉 = 1 − R2

4(4 + S)
n(2 − n) + O(R4). (15)

From this expression, we are able to compute the standard
deviation of the processus and recover a relation enlight-
ened by [29]. In the limit of inertia (or equivalently S)
going to zero, we have:

δP 2
Γ ≡ Γ 2

m[〈Ω2〉 − 〈Ω〉2]
= Γ 2

m〈Ω〉2
[ 〈χ2〉
〈χ〉2 − 1

]

= Γ 2
m

R2

8
〈Ω〉2 =

D

4τ
〈Ω〉2 =

1
4
δP 2

Ω . (16)

This relation shows that in the limit where the inertia of
the disk is going to zero, the fluctuations of power deliv-
ered by the motor are twice smaller in one of the mode of
forcing, namely the Γ -mode as compared to the Ω-mode
(with the same mean angular rotation rate). However, this
relation has been derived under the assumption of vanish-
ing noise. We now have to check if this relation holds when
the noise becomes stronger and stronger. In Figure 6, we
plotted the quantity α = δP 2

Γ

δP 2
Ω

numerically computed from
the expression (14) versus the adimensionalized inertia, S
and simultaneously, the expression derived in Appendix B,
in the limit R � 1, α = 1

4+S . We see roughly that for
R < 1, the preceding relation is in good agreement with
the numerical calculations, whereas for R > 1, the two
quantities diverge one from another. Furthermore, in this
last situation, α is not close to 1

4 as S is going to zero. The
relation (16) is consequently only valid under the double
assumption: R � 1 and I → 0.
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In summary, we found in this section a relation link-
ing the fluctuations of the injected power in two forcing
regimes: one with constant velocity and one with con-
stant torque. This relation is valid for vanishing inertia
and states (Eq. (16)) that the power fluctuation at con-
stant velocity are twice larger as power fluctuations at
constant torque. This relation has been empirically dis-
covered by Titon and Cadot [29] using experimental data,
without discussion of its range of validity. With our model,
we predict that this range is restricted to weak noise and
weak inertia, as can be seen in Figure 6.

Application

Our analytical computation can be used to explain the dif-
ference between the two models. For this, we can compute
the values of the parameter R and S for the two mod-
els, using the calibrated constants. In the model OWN,
we find R = 0.11 and S = 62.6. This indeed corre-
sponds to the weak noise limit, and from (36) we find
δΩ2 = [〈χ2〉 − 〈χ〉2]Γm/c = 0.34. In the model EWN, we
find R = 0.11 and S = 23.3. We therefore recover the same
value for the noise intensity, but a quite different value for
the adimensionalized inertia S. Using formula (36), this
results in δΩ2 = 0.84, about twice bigger as the value for
the OWN model! This therefore explains the difference
between the two models. It is therefore now interesting to
compare this PDF with experimental data, to see which
model is closer to the real distribution.

Comparison with experimental data

In Figure 7, we show the experimental data of
the VKE experiment forced with a constant torque
(Γm = 2.8 kg m2 s−2) and in such a way that the mean
angular velocity is roughly 60 rad s−1 (the exact value
is 61.6 rad s−1). This is compared with the theoretical
prediction for both the OWN and the EWN model. As
one can see, the experimental curve agrees very well with
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Fig. 8. Spectrum of the correlation function of ξ calculated
in the Γ -mode.

the EWN model, but not with the OWN model. A OWN
model can reproduce the data only provided a change of
the parameters of the fit, e.g. a oscillation’s frequency
smaller by a factor of

√
3, or no oscillation at all. Indeed

the spectrum of the correlation function of ξ in the Γ -
regime shows no preferred frequency (Fig. 8).

In previous experiments of von-Karman swirling flow,
it has been observed that the skewness in Ω and Γ mode
is of different sign. It is not possible to reproduce such a
feature in our model since, by assumption, the skewness is
zero in the Ω mode (Gaussian noise). However, it is pos-
sible to investigate the skewness in Γ mode. To proceed,
one needs to carry the Laplace method ut to terms in R4

(one can check that the skewness vanishes up to order 2)
and after straightforward calculations, it appears that the
skewness is:

〈(x − 〈x〉)3〉
(〈x2〉 − 〈x〉2)3/2

= − R(12 + S)√
2(4 + S)3

. (17)

This quantity is always negative, a result consistent with
previous experimental observations (see for example [37]).
In our experimental result, the skewness is measured to
be –0.026. With the value of the parameters, our analyti-
cal prediction gives a value for the skewness of –0.019 for
the EWN model, and –0.011 for the OWN model. Again,
there is much better agreement between the experimental
results and the EWN model, than with the OWN model
in this regime. There are two possible explanation:

1. the oscillation detected is a pure experimental artefact,
so that OWN has no physical origin;

2. the frequency of oscillation is not an universal param-
eter and varies accordingly to the forcing regime.

Datas seem to select the second explanation. It is never-
theless interesting to understand better the physical dif-
ference between the two models, trying to pin-point its
origin from the Navier-Stokes equations.
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4 What can be said from a quasi-linear model
of turbulence?

4.1 Basic equations

In the previous sections, we have derived a Langevin
model for the turbulent torque Γf . In fact, this torque
can be simply related to a component of the Reynolds
stress through the angular momentum conservation, see
e.g. Marié and Daviaud [33]:

Γf =
∫

Σp

ρuzuφrdS. (18)

Here Σp is the cross-section of the cylinder which closes
the portion that is swept by the blades of the stirrer, and
uφ and uz denote the azimuthal and vertical fluid velocity
component. If we now separate the velocity into its mean
〈u〉 and fluctuating u′ contribution, we get:

Γf =
∫

Σp

ρ(〈uz〉〈uφ〉 + 〈uz〉u′
φ

+ u′
z〈uφ〉 + u′

zu
′
φ)rdS. (19)

The average of this expression gives the mean torque as:

〈Γf 〉 =
∫

Σp

ρ(〈uz〉〈uφ〉 + 〈u′
zu

′
φ〉)rdS. (20)

This is a classical expression for the torque transport. It is
easy to express it on pure dimensional ground as 〈Γf 〉 =
−c|Ω|Ω, where c is a drag coefficient. Our main interest
is the fluctuating part of Γf , which will provide the noise
contribution. It is:

Γ ′
f =

∫
Σp

ρ(〈uz〉u′
φ + u′

z〈uφ〉 + u′
zu

′
φ − 〈u′

zu
′
φ〉)rdS. (21)

At this point, it is natural to assume that the difference
u′

zu
′
φ−〈u′

zu
′
φ〉 (the fluctuating part of the Reynolds stress)

is small compared to the other two terms, which are both
proportional to the average of a mean quantity. Also, since
the fluctuating part varies over time scale much smaller
than the mean part, it is easy to see that we must have:

DtΓ
′
f ≈

∫
Σp

ρ(〈uz〉Dtu
′
φ + Dtu

′
z〈uφ〉)rdS. (22)

A model for the fluctuating torque variation will then be
found provided one finds a model for the fluctuating ve-
locity variations.

4.2 The quasi-linear approximation

To obtain the dynamical behavior of fluctuating velocities,
we use the turbulent model of Laval, Dubrulle and Mc
Williams [25] in which the velocity is given as a solution
of a linear stochastic equation of Langevin type, valid for
localized wave-packets, which may be summarized as:

Dtû
′
i = −νtk2û′

i + Bij û
′
j + ηi, (23)

where Bij is a linear operator depending only on the av-
erage velocity, νt is a turbulent viscosity, and

û′(x,k, t) =
∫

g(|x − x′|)eik·(x−x′)u′(x′, t)dx′, (24)

g being a function which decreases rapidly at infinity.
Equation (24) is a Gabor transform, defining a localized
wave-packet at position x with local wavenumber k. The
advantage of considering Gabor mode is that it allows sim-
ple treatment of dissipation and pressure terms [15]. Note
that by construction, ui = g(0)

∫
dkûi(k). Here, ηi is a

noise, representing the input of energy via the energy cas-
cade. The major approximation of the model is to lump
the non-linear terms describing local interactions into a
turbulent viscosity νt.

4.3 Reynolds stresses in the quasi-linear approximation

Using the slow variation of 〈u〉, we may write the Gabor
transform of Qij = 〈ui〉u′

j as 〈ui〉û′
j . It is then easy to see

that the Gabor transform of Q satisfies, in matrix nota-
tion:

DtQ̂ = −νtk2Q̂ + Q̂B+ + H, (25)

where H is a noisy matrix Hij = 〈ui〉ηj and the sym-
bol + means transposed. Decomposing finally B into its
symmetric part S and anti-symmetric part A, one obtains
finally:

DtP̂ = −νtk2P̂ + Q̂S + SQ̂+ + AQ̂+ − Q̂A + H + H+,

DtM̂ = −νtk2M̂ + Q̂S − SQ̂+ + AQ̂+ + Q̂A + H − H+,
(26)

where P = Q + Q+ and M = Q − Q+. One can get
physical insights of this system by considering the special
case when Q commutes with S and A. In that case, one
gets:

DtP̂ = −νtk2P̂ + SP − AP + H + H+,

DtM̂ = −νtk2M̂ + SM + AM + H − H+. (27)

It is then easy to see that P and M will behave like
a damped oscillator with noise, with damping given by
eigenvalues of S − νtk2I and oscillation given by square
root of eigenvalues of A2.

4.4 Application to torque in von Karman

Since Γf =
∫

Pφz, we can now use the result on the
Reynolds stresses to understand the physical origin, if any,
of the various terms appearing in our model (2) and (4).
We see that the friction term arises from a combination
of turbulent viscosity and symmetrical part of B, i.e. the
mean flow stretching. The noise term arises from the en-
ergy cascade from large to small scale, while the possi-
ble oscillating behavior arises from the anti-symmetrical
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part of B, i.e. is linked with the mean flow vorticity.
For example, if one approximate the von Karman flow
by a pure rotating shear flow 〈u〉 = σrzeφ. Its symmet-
rical tensor S has only two non-zero component, Sφz =
Szφ = 0.5rσ while the four non-zero components of A are
Arφ = −Aφr = −rσ and Azφ = −Aφz = −0.5rσ. In that
case, A2

zφ = 0 and one can reasonably expect that the
same component of P has no oscillatory behavior. This
would favor the model EWN (simple damped noise). In
realistic von Karman flow, however, a poloidal velocity
component is present, due to Ekman pumping. Imagine
then that this poloidal field is able to couple linearly u′

z

and u′
φ through a term like:

Dtû
′
z = αû′

φ. (28)

Since u′
φ is coupled to u′

z via the differential rotation:

Dtû
′
φ =

d〈uφ〉
dz

û′
z, (29)

this induces a possible oscillatory behavior for û′
z and û′

φ,
hence for Γ ′

f .

5 Discussion

In this paper, we studied the injected power in a turbulent
device, namely the von Karman swirling flow, by mean
of a stochastic model of the turbulent torque. Within
this frame, we obtained a few salient results, which were
tested and validated on experimental data. Assuming a
Gaussian shape with exponential time-correlation of the
turbulent torque (EWN model), we recovered the link
between variances of power fluctuations in two different
forcing regimes (at constant angular velocity and constant
applied torque). Moreover, the model was shown to allow
for parameter-free prediction of the shape of the PDF of
power fluctuations in the case with forcing at constant
torque. Further experimental tests of the model are
warranted, regarding for example the statistics of the
power injected by the turbulence, or the dependence of
the model parameters with global quantities. This is left
for future work.

We thank O. Cadot and C. Titon for having motivated the
present “two-mode” study by experimental considerations and
their numerous remarks. We wish also to thank F. Daviaud for
his valuable comments and encouragements.

Appendix A: Derivation of the PDF
for the angular velocity

In this section, we show how to derive the probability dis-
tribution function for Ω verifying the following Langevin

equation:

dΩ

dt
=

Γm − c|Ω|Ω
I

+
ξ

I
,

dξ

dt
= −1

τ
ξ +

η(t)
τ

, (30)

where η is a Gaussian δ-correlated noise.
This is a non Markovian process which means that

no Fokker-Planck equation for the associated distribution
can be derived. To overcome this difficulty we used the
unified colored noise approximation [35,36] which permits
to rewrite the stochastic system in the following way:

dΩ

dt
=

Γm − c|Ω|Ω
ε(Ω)

+
η(t)
ε(Ω)

, (31)

with ε(Ω) = I +2cτ |Ω|. This last equation is now Marko-
vian and we can instantaneously derive a Fokker-Planck
equation:

∂P (Ω, t)
∂t

= − ∂

∂Ω

(
Γm − c|Ω|Ω

ε(Ω)
P (Ω, t)

)

+ D
∂

∂Ω

1
ε(Ω)

∂

∂Ω

1
ε(Ω)

P (Ω, t). (32)

The stationary distribution follows immediately by inte-
gration (Eq. (13)).

Appendix B: Moments of the distribution

We want to compute the moment:

〈χn〉 = N

∫ +∞

−∞
fn(t) exp

[
− 1

R2
Φ(t)

]
dt,

with:

fn(t) = tn
(
|t| + S

4

)
, (33)

Φ(t) = (t2 − θ(t))2 − St +
S

3
θ(t)t3. (34)

Using Laplace’s method up to the second order (cf. [38]),
we have in the limit R � 1:

〈χn〉 = N

√
2πR2

Φ′′(t0)
e−

Φ(t0)
R2

[
fn(t0) − R2

(
− f ′′

n (t0)
2Φ′′(t0)

+
f ′

n(t0)Φ′′′(t0)
2[Φ′′(t0)]2

+
fn(t0)Φ′′′′(t0)

8[Φ′′(t0)]2
− 5fn(t0)[Φ′′(t0)]2

24[Φ′′′(t0)]3

)]
,

where t0 is the minimum of Φ on ]−∞+∞[. For every S,
one can show that t0 = 1 and using the fact that 〈χ0〉 = 1,
the following expression is computed:

〈χn〉 = 1 − R2

4(4 + S)
n(2 − n) + O(R4). (35)
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For n = 2, one get 〈χ2〉 = 1, which is equivalent to 〈Ω2〉 =
Γm/c, a trivial relation because it’s only the mean part
of equation (8). More interesting, one can compute the
standard deviation of χ and look at its limit when S (or
the inertia) tends to zero:

〈χ2〉 − 〈χ〉2
〈χ〉2 =

R2

2(4 + S)
+ O(R4) −→ R2

8
. (36)

When writing this last equation, in terms of Ω, we recover
the equality (16).
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60, R2452 (1999)
38. C.M. Bender, S.A. Orszag, Advanced mathematical meth-

ods for scientists and engineers (Mc Graw Hill, 1975)


